CE-842 Performance-Based Seismic Design of Structures

Code	Credit Hours	Category
CE-842	3	Elective

Course Description:

Performance-Based Seismic Design of Structures is a course designed to provide students with advanced knowledge in seismic structural design philosophies and stateof-the-art analysis techniques. The course focuses on enhancing skills in nonlinear modeling, dynamic analysis, and interpreting seismic performance using modern computational tools. Students will gain proficiency in applying performance-based design principles to evaluate and enhance the seismic resilience of structures.

Text Book:

• T. Pauley, and M. J. N. Priestley, (1992): Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons, New York.

Reference Books:

- A. K. Chopra, (1995): Dynamics of Structures-Theory and Applications to Earthquake Engineering, Prentice Hall, New Jersey.
- R. W. Clough, and J. Penzien, (1993): Dynamics of Structures, McGraw-Hill, New York, 2nd Edition.
- J. W. Smith, (1988): Vibration of Structures: Applications in Civil Engineering Design, Chapman and Hall, London.
- W. F. Chen and C. Scawthorn (2003), Earthquake Engineering Handbook.
- T. Y. Lin and S.D. Stotesbury (1988): Structural Concepts and Systems for Architects and Engineers, 2nd edition, Van Nostrand Reinhold.
- Graham H. Powell (2010): Modeling for Structural Analysis, Computers & Structures Inc.
- Edward L. Wilson (2000): Three-Dimensional Static and Dynamic Analysis of Structures, Computers & Structures Inc.
- Tall and Super-tall Buildings: Planning and Design (2014): Editor: Akbar Tamboli, Publisher: McGraw-Hill Professional, with CTBUH and ICC, ISBN13: 978-0071818711 ISBN: 0071818715
- James K. Wight (2016): Reinforced concrete: Mechanics and design, 7th edition, Prentice Hall.
- E. G. Nawy (2009): Reinforced concrete: A Fundamental Approach, 6th edition, Prentice Hall International
- Arthur H. Nilson, David Darwin, Charles W. Dolan (2005): Design of Concrete Structures, 13th Edition.
- Bungale S. Taranath (2010): Reinforced Concrete Design of Tall Buildings, Taylor and Francis Group, LLC.

Prerequisites:

• BE (Civil, Architecture, Construction Engineering & Management)

Assessment System

Component	Percentage Range
Quizzes	10-15%
Assignments	10-15%
Mid Terms	20-30%
ESE	40-50%
Project (optional)	10-15%

Teaching Plan:

Week No	Topic	Learning Outcomes	
1	Introduction to Performance- based Design Approach	 Understand seismic design philosophies Introduction to code-based seismic design 	
2	Classical Modal Analysis Procedure	Apply modal analysis in structural dynamics	
3	Equivalent Lateral Force Procedure	Use equivalent lateral force method in seismic analysis	
4	Response Spectrum Analysis Procedure	Perform response spectrum analysis	
5	From Code-based Design to PBD: Basics and Methodology	Transition from code-based to performance-based design	
6	Structural Performance Levels and Acceptance Criteria	Define performance levels and criteria	
7	Nonlinear Modeling Overview	 Understand linear elastic modeling Hands-on with ETABS 2016 	
8	Fundamentals of Nonlinear Modeling	Implement distributed and lumped plasticity approaches	
9	Mid Term Exam/ OHT, (As per NUST Exam Policy)		
10	Hysteretic Behaviors, Strength Loss, Cyclic Degradation	Analyze nonlinear structural behavior	
11	Case Study Presentation	Present findings from case studies	

	Session	
12	Static Pushover Analysis	Perform static pushover analysis
13	Single-mode Pushover Analysis	Perform single-mode pushover analysis
14	Multi-mode Pushover Analysis	Perform multi-mode pushover analysis
15	Selection of Seismic Input for Dynamic Analysis	Choose seismic input for dynamic analysis
16	Nonlinear Time History Analysis	Perform nonlinear time history analysis
17	Interpreting Analysis Results	Interpret results from pushover and time history analyses
	Service-level and MCE-level Evaluation of Structural Performance	• Evaluate structural performance at different seismic intensities
18	End-Semester Examination (ESE)	Demonstrate comprehensive understanding
	Term Project Presentation Session	• Present performance-based seismic evaluation of a real case study building